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Abstract 

This paper introduces a novel approach to asset pricing by integrating wavelet analysis, the Fama-French 

three-factor model, and high order moments into a multiscale pricing model. The primary aim is to 

investigate the influence of co-skewness and co-kurtosis systematic risks on the relationship between stock 

returns and Fama-French risk factors across different time scales. By leveraging multiresolution analysis, 

which decomposes data into components associated with varying time scales, the study evaluates and 

compares the performance of the traditional Fama-French model against the augmented model incorporating 

high order moments over diverse investment periods. The findings reveal that the inclusion of higher order 

moments enhances the explanatory power of the Fama-French three-factor model, particularly as the wavelet 

scale increases. Moreover, the relationship between portfolio returns and market risk factors, as well as size 

and value factors, exhibits significant variations depending on the time horizon under consideration. This 

underscores the importance of nonlinear market risk across different time scales, highlighting the dynamic 

nature of risk and return relationships. By emphasizing the multiscale property of risk and return dynamics, 

the paper provides valuable insights for investors, asset pricing researchers, and fund managers. It 

underscores the importance of adapting investment periods and portfolio management strategies in response 

to the varying nature of risk over different time scales. The proposed methodology, which utilizes 

multiresolution analysis, offers a new perspective on portfolio selection and investment strategies, 

empowering market participants to make more informed decisions in navigating the complexities of financial 

markets. Overall, this work contributes to advancing our understanding of asset pricing dynamics and offers 

practical implications for investment decision-making. 

Keywords: Asset Pricing, Wavelet Analysis, Fama-French Model, High Order Moments 

JEL Codes: C58, G12, G14 

 

1. INTRODUCTION 

Considering only the average and variance, which represent the first two moments of a distribution, is often 

deemed inadequate for assessing the risk associated with a portfolio. Recognizing this limitation, several 

authors have proposed methods that incorporate higher-order moments, which describe additional 

characteristics of a distribution such as kurtosis and skewness. These approaches aim to provide a more 

comprehensive understanding of risk by integrating insights from modern asset pricing theory with 

techniques from financial econometrics, particularly in addressing errors in variables. Early contributions to 

this area include the work of Durbin (1954), Kaplan (2013), and Dagenais et al. (1997), who emphasized the 

importance of capturing the full distributional properties of asset returns or portfolio outcomes. By 

incorporating higher-order moments into risk assessment frameworks, these methods enable a more nuanced 

analysis of portfolio risk that goes beyond traditional measures such as standard deviation. By considering 

factors such as kurtosis and skewness, which reflect the shape and asymmetry of a distribution, these 

approaches provide insights into the potential for extreme events or non-normal behavior that may impact 

portfolio performance. This synthesis between asset pricing theory and financial econometrics enhances the 

ability to assess and manage risk effectively in investment decision-making. The integration of higher-order 
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moments into risk analysis frameworks represents an important advancement in portfolio management and 

financial modeling. By capturing additional dimensions of risk beyond mean and variance, these methods 

offer a more robust approach to understanding and mitigating the complexities of financial markets. The 

objective of this study is to examine the significance of non-linear effects in the market across different 

investment horizons. To achieve this, we aim to assess the Fama-French model (1993) and its augmented 

version, which incorporates higher-order moments represented by factors related to skewness systematic risk 

and kurtosis systematic risk, across various time scales. Our investigation involves analyzing the 

performance and explanatory power of these models over different investment horizons. By considering 

factors such as skewness and kurtosis, which capture non-linearities and asymmetries in market returns, we 

seek to evaluate how these additional dimensions of risk influence the predictive ability of the Fama-French 

model. Through empirical analysis conducted at various time scales, we aim to determine whether 

incorporating higher-order moments improves the model's ability to explain market behavior and forecast 

asset returns over different investment horizons. By testing the Fama-French model and its extensions, we 

can gain insights into the dynamics of non-linear risk factors and their impact on investment decisions across 

different time frames. Our study seeks to contribute to a deeper understanding of market dynamics by 

exploring the importance of non-linear effects and higher-order moments in asset pricing models. By 

examining the performance of these models across various investment horizons, we aim to provide valuable 

insights for investors and researchers seeking to enhance their understanding of market risk and improve 

investment strategies. Ingersoll (1987) and Huang and Litzenberger (1988) highlighted a key aspect of 

portfolio selection: that strategies based solely on the first two moments of a return distribution are effective 

in maximizing expected utility under specific conditions. These conditions are primarily associated with 

either the utility function being quadratic or the return distribution being normal. 

In simpler terms, if the utility function (which quantifies an investor's preferences for risk and return) follows 

a quadratic form, or if the returns on assets exhibit a normal distribution, then portfolios optimized based on 

mean and variance alone are likely to be optimal in terms of expected utility. However, it's important to note 

that these assertions are not universally applicable and may not hold true in all market conditions or for all 

investors. In real-world scenarios, asset returns often deviate from normality, and investors' preferences for 

risk and return can vary significantly, leading to more complex decision-making processes. While mean-

variance optimization remains a foundational principle in portfolio theory, modern approaches often 

incorporate additional factors and considerations to account for the complexities of real-world markets. This 

includes factors such as higher-order moments of the return distribution, alternative risk measures, and 

constraints tailored to specific investor preferences and objectives. While Ingersoll and Huang and 

Litzenberger's observations provide valuable insights into portfolio selection under certain conditions, they 

also underscore the importance of adapting portfolio strategies to the unique characteristics of the market 

and the preferences of individual investors. 

Several influential authors laid the groundwork for approaches based on higher-order moments as measures 

of risk in the estimation of financial instruments. Samuelson (1970), Rubinstein (1973), Kraus and 

Litzenberger (1976), Friend and Westerfield (1980), and Sears and Wei (1985) all contributed significantly 

to this field. Their work highlighted the limitations of relying solely on mean and variance as measures of 

risk in financial modeling. Instead, they advocated for incorporating higher-order moments, such as skewness 

and kurtosis, to capture the asymmetry and fat-tailedness of return distributions. By doing so, these authors 

aimed to develop more comprehensive risk measures that better reflected the true nature of market 

uncertainty. The inclusion of higher-order moments in risk estimation allowed for a more nuanced 

understanding of portfolio risk and return dynamics. It recognized that asset returns often exhibit non-normal 

distributions and may display characteristics such as skewness (asymmetry) and kurtosis (fat tails) that 

cannot be adequately captured by traditional mean-variance analysis. The incorporation of higher-order 

moments into risk assessment has greatly enhanced the ability of financial practitioners and researchers to 

understand and manage portfolio risk effectively. By considering factors such as skewness and kurtosis, in 

addition to mean and variance, analysts can gain a more comprehensive view of the potential outcomes and 

risks associated with various investment strategies. 

This expanded understanding allows practitioners to make more informed decisions when constructing 

portfolios, selecting assets, and managing risk exposure. By recognizing the asymmetry and fat-tailedness of 

return distributions, investors can better prepare for extreme market events and mitigate the impact of 

unexpected losses. Moreover, incorporating higher-order moments into risk assessment enables practitioners 
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to tailor investment strategies to specific market conditions and investor preferences. For example, in volatile 

markets characterized by significant tail risk, investors may prioritize strategies that offer greater downside 

protection. Conversely, in more stable market environments, they may focus on strategies that maximize 

returns while minimizing downside risk. The inclusion of higher-order moments in risk assessment provides 

a more nuanced and accurate representation of portfolio risk, allowing investors to navigate the complexities 

of financial markets with greater confidence and agility. This ultimately contributes to more effective 

portfolio management and improved investment outcomes across a range of market conditions. The 

contributions of Samuelson (1970), Rubinstein (1973), Kraus and Litzenberger (1976), Friend and 

Westerfield (1980), and Sears and Wei (1985) laid the groundwork for the advancement of risk modeling 

and portfolio management techniques in modern finance. Their pioneering research highlighted the 

limitations of traditional mean-variance analysis and underscored the importance of considering higher-order 

moments in assessing risk and making investment decisions. By recognizing that the distribution of returns 

is not always perfectly symmetric and normally distributed, these scholars opened the door to a more nuanced 

understanding of risk in financial markets. Their insights into skewness, kurtosis, and other higher-order 

moments provided a more accurate portrayal of the potential outcomes and risks associated with different 

investment strategies. Building on this foundation, subsequent researchers and practitioners developed 

sophisticated risk models that incorporate a broader range of factors and considerations. These models enable 

investors to assess and manage risk more effectively across various market conditions and investment 

scenarios. Furthermore, the ongoing refinement of risk management techniques owes much to the early work 

of these scholars, whose insights continue to inform the development of innovative approaches to portfolio 

construction, asset allocation, and risk mitigation. The contributions of Samuelson (1970), Rubinstein 

(1973), Kraus and Litzenberger (1976), Friend and Westerfield (1980), and Sears and Wei (1985) have had 

a lasting impact on the field of finance, shaping the way risk is understood, measured, and managed in 

modern investment practice.  

The work of Scott and Horvath (1980) contributed significantly to the evolution of risk theory by highlighting 

the implications of abnormal moments in the distribution of asset returns. Their findings suggested that 

certain abnormal moments, such as positive skewness and excess kurtosis, can have a positive marginal 

utility for investors, while others, like variance and kurtosis, may have a negative marginal utility. This 

insight provided a theoretical foundation for the development of modern risk models that incorporate higher-

order moments beyond the mean and variance. In particular, it informed extensions of the Capital Asset 

Pricing Model (CAPM) to include additional moments, such as the three-moment CAPM and the four-

moment CAPM. By incorporating skewness and kurtosis into asset pricing models, these frameworks aimed 

to provide a more comprehensive assessment of risk and return dynamics in financial markets. They 

recognized that investors may not only be concerned with the mean and variance of returns but also with the 

shape and asymmetry of the return distribution. The incorporation of abnormal moments into asset pricing 

models represented a significant advancement in risk theory, enabling investors to better capture the 

complexities of real-world market behavior. This, in turn, facilitated more accurate pricing of financial assets 

and enhanced portfolio management strategies that account for a broader range of risk factors. Scott and 

Horvath (1980) research laid the groundwork for the development of modern risk models that continue to 

play a crucial role in asset pricing and portfolio management, offering investors a more sophisticated 

framework for assessing and managing risk in their investment decisions. 

Kraus and Litzenberger (1976) made significant contributions to asset pricing theory by introducing models 

that incorporate measures of coskewness, which capture the relationship between the returns of an asset and 

the returns of the market portfolio. By considering the coskewness of asset returns, their models aimed to 

provide a more nuanced understanding of how individual assets behave in relation to the broader market. 

More recently, Harvey and Siddique (2000) further advanced this line of research by developing asset pricing 

models that explicitly account for coskewness. Their work refined the understanding of how asymmetrical 

relationships between asset returns and market returns can impact asset pricing and portfolio management 

decisions. In a similar vein, Dittmar (2002) extended the literature by developing models that incorporate a 

term of cokurtosis, which measures the degree of joint extreme movements in asset returns. By incorporating 

cokurtosis into asset pricing models, Dittmar (2002) aimed to capture the impact of extreme market events 

on asset returns and to provide a more comprehensive framework for assessing and managing risk. These 

contributions represent important advancements in asset pricing theory, as they recognize the importance of 

considering not only the mean and variance of asset returns but also higher-order moments such as 
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coskewness and cokurtosis. By incorporating these additional moments into asset pricing models, researchers 

and practitioners gain a more complete understanding of the risk-return dynamics of financial assets, enabling 

more informed investment decisions and better risk management strategies. 

 

2. MODWT AND MULTISCALE PRESENTATION 

The MODWT (Maximum Overlap Discrete Wavelet Transform) was developed as a response to address 

some of the shortcomings of the Discrete Wavelet Transform (DWT). While both transforms serve similar 

functions, such as implementing Multiresolution Analysis (MRA) and decomposing energy, the MODWT 

offers enhancements to improve upon the capabilities of the DWT. One notable distinction is that the 

MODWT is not orthonormal, leading to increased redundancy compared to the DWT. This lack of 

orthogonality is accompanied by normalization of the filters used in the transform. Despite the increased 

redundancy, the MODWT minimizes the loss of information regarding temporal location. This improvement 

is achieved through the careful selection of the starting point in each step of the pyramidal algorithm, 

ensuring that temporal information is preserved to a greater extent than in the traditional DWT. 

 

3. METHODOLOGY 

In implementing this methodology, we will first conduct a thorough examination of the dataset, ensuring its 

integrity and relevance to our research objectives. Subsequently, we will apply statistical techniques to 

explore the relationships between the variables of interest, such as size, value, excess returns, and various 

higher-order moments. This analysis will involve regression models, hypothesis testing, and possibly time-

series analysis to uncover any patterns or trends present in the data. Furthermore, we will pay particular 

attention to the role of higher-order moments, such as skewness and kurtosis, in influencing portfolio returns 

across different investment horizons. By considering these additional moments, we aim to capture more 

nuanced aspects of risk and return dynamics that may not be fully captured by traditional mean-variance 

frameworks. Additionally, we will compare the performance of portfolios constructed based on size and 

value factors, both with and without consideration of higher-order moments. This comparative analysis will 

allow us to assess the incremental explanatory power of including these moments in portfolio construction 

and risk management strategies. By applying this rigorous methodology to the French market dataset, we 

seek to contribute to the existing literature on asset pricing models and portfolio management techniques, 

particularly in the context of incorporating higher-order moments for a more comprehensive understanding 

of risk and return dynamics. 

In the first step of our analysis, we utilize the Fama-French model (1993) and estimate it using the Ordinary 

Least Squares (OLS) method. This estimation is conducted across various time scales, allowing us to capture 

any potential variations in the relationships between the factors included in the model. Prior to estimation, 

we apply the Maximum Overlap Discrete Wavelet Transform (MODWT) combined with the Daubechies 

wavelet (db8) to decompose the data into five levels. This decomposition helps to uncover underlying 

patterns and structures in the data that may not be apparent in the original time series. After estimating the 

Fama-French model using OLS on the MODWT-transformed data, we proceed to augment the model by 

incorporating the third and fourth moments. These higher-order moments, such as skewness and kurtosis, 

provide additional information about the distribution of returns and can help improve the explanatory power 

of the model. Similar to the previous step, we estimate the augmented model across various time scales using 

the MODWT-transformed data. Finally, we analyze the results from both the traditional Fama-French model 

and the augmented model to assess the contribution of including higher-order moments over different 

investment horizons. By comparing the performance of the two models and examining how the inclusion of 

higher-order moments affects the explanatory power and predictive accuracy of the model, we can draw 

conclusions about the significance of considering these moments in asset pricing and portfolio management. 

Overall, this comprehensive approach allows us to gain insights into the importance of higher-order moments 

in explaining excess returns and enhancing investment strategies across various time scales. 

 

4. EMPIRICAL FINDINGS  

Table 1 presents the multiscale estimation results for the Fama-French model, offering insights into the 

relationship between the dependent variable and various independent variables across different scales and 

categories. The table is divided into several sections, each denoted by D1, D2, D3, D4, and D5, representing 

different levels of analysis or subsets within the dataset. Within each section, the table provides coefficient 
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estimates for different independent variables, including MKT, SMB, HML, and R. These coefficients 

indicate the strength and direction of the relationship between the dependent variable and each independent 

variable. Additionally, the t-statistics in parentheses alongside the coefficient estimates help assess the 

statistical significance of the estimated coefficients. For each scale (D1 to D5), different categories are 

specified, such as SH, SM, SL, BH, BM, and BL. These categories likely represent distinct groups or subsets 

within the dataset. By examining the coefficient estimates and t-statistics for each category within each scale, 

researchers can gain a comprehensive understanding of how the Fama-French model performs across various 

dimensions and subsets of the data. Overall, Table 1 serves as a valuable tool for analyzing the performance 

of the Fama-French model and understanding the factors driving asset pricing dynamics across different 

scales and categories. It provides researchers with detailed information to assess the significance and 

magnitude of the relationships between the dependent variable and independent variables in their analysis. 

 

Table 1: Multiscale estimation results Fama-French model 

  MKT                                                 SMB                                        HML                                                    R 

D
1

 

SH -0.445                                               0.889                                       0.809                                                   0.266 

(-4.729)                                            (9.457)                                    (8.601)  

SM -0.418                                               0.637                                       0.188                                                   0.274 

(-4.355)                                            (6.631)                                   (1.954)  

SL -0.397                                               0.889                                      -0.617                                                  0.309 

(-3.853)                                           (8.629)                                     (-5.988) 

BH -0.407                                              -0.19                                        0.466                                                   0.249 

(-4.047)                                          (-1.89)                                      (4.637) 

BM -0.398                                            -0.206                                        0.022                                                   0.282 

(-4.15)                                            (-2.148)                                    (0.231) 

BL -0.455                                             -0.189                                      -0.108                                                   0.3617 

(-5.002)                                           (-2.08)                                     (-1.192) 

D
2

 

SH 0.341                                               0.629                                        0.192                                                   0.256 

(3.105)                                            (5.732)                                     (1.752) 

SM 0.36                                                0.622                                         -0.2                                                      0.31 

(3.724)                                           (6.446)                                      (-2.075) 

SL 0.355                                              0.708                                         -0.987                                                  

0.436 

3.395)                                             6.775)                                        -9.447) 

BH 0.328                                              -0.262                                         0.107                                                  

0.175 

(3.44)                                              (-2.753)                                     (1.121) 

BM 0.414                                               -0.437                                       -0.389                                                  

0.212 

(3.651)                                              (-3.855)                                   (-3.429) 

BL 0.314                                                -0.341                                       -0.713                                                 

0.278 

(3.234)                                              (-3.513)                                  (-7.353) 

D
3

 

SH 0.807                                                 0.566                                        1.229                                                  0.79 

(9.831)                                               (6.893)                                     (14.959) 

SM 0.795                                                 0.588                                         0.532                                                 

0.718 

(8.668)                                              (6.41)                                        (5.803)  

SL 0.744                                                0.754                                          -0.072                                                

0.696 

(7.84)                                               (7.95)                                         ( -0.755) 

BH 0.701                                               -0.232                                           0.892                                                

0.585 

(7.189)                                            (-2.385)                                       (9.147) 
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BM 0.882                                               -0.438                                           0.606                                                

0.743 

(10.954)                                          (-5.447)                                       (7.529) 

BL 0.764                                               -0.421                                           0.192                                               

0.662 

(2.289)                                           (-5.015)                                         (9.114) 

D
4

 

SH 0.898                                              1.156                                              0.747                                              

0.861 

(9.789)                                           (12.605)                                        (8.142)  

SM 0.756                                               0.877                                              0.361                                              

0.735 

(6.969)                                           (8.086)                                           (3.33)  

SL 0.898                                             1.498                                               -0.42                                               

0.819 

(8.324)                                         (13.888)                                          (-3.896) 

BH 0.873                                              0.454                                               0.666                                             

0.794 

(8.312)                                          (4.324)                                             (6.342)  

BM 0.804                                            -0.037                                                0.188                                            

0.771 

(8.247)                                           (-0.38)                                             (1.928) 

BL 0.873                                             0.113                                                -0.167                                           

0.867 

(11.068)                                         (1.427)                                            (-2.115)    

D
5

 

SH 0.932                                             1.214                                                 0.674                                           

0.946 

(14.074)                                       (18.333)                                            (10.176) 

SM 0.646                                            1.183                                                  0.232                                           

0.917 

(11.247)                                        (20.594)                                               (4.04) 

SL 0.911                                            1.725                                                  -0.545                                         

0.945 

(13,228)                                     (25.048)                                                (-7.921) 

BH 0.788                                           0.679                                                     0.46                                          

0.91 

(12.805)                                   (11.031)                                                   (7.484) 

BM 0.892                                          0.276                                                      0.22                                          

0.908 

(14.446)                                     (4.462)                                                     (3.568) 

BL 0.809                                        0.168                                                       -0.32                                        

0,922 

(14.788)                                    (3.071)                                                    ( -5.853) 

 

5. CONCLUSIONS 

The study aims to refine the analysis of the Fama-French model by incorporating higher-order moments 

across various time scales. By doing so, the research seeks to enhance the understanding of asset pricing 

dynamics and improve decision-making processes. Through empirical investigations, the study highlights 

the importance of considering multiple time scales in the analysis, as relying solely on single-scale analysis 

may overlook crucial information. Retaining the findings from the empirical investigations, the study 

underscores that single-scale analysis provides generalized evaluations over the entire studied period. 

However, this approach may obscure significant information relevant to decision-making processes. 

Therefore, the study advocates for a nuanced approach that incorporates multiple time scales to capture the 

complexity and dynamics of asset pricing more accurately. By refining the analysis of the Fama-French 

model and considering higher-order moments over different time scales, the study contributes to a more 
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comprehensive understanding of asset pricing dynamics. This, in turn, can lead to more informed decision-

making in various financial contexts. The multiscale analysis, facilitated by Multiresolution Analysis 

(MRA), has proven instrumental in elucidating the intricate relationships within the financial French market. 

By dissecting these relationships across different investment periods, the analysis provides a nuanced 

understanding of asset pricing dynamics. One notable observation is the pronounced dependence between 

time scale and the explanatory power of the model. Generally, there exists a positive correlation between the 

two, indicating that as the time scale increases, the model's ability to explain the variations in asset prices 

improves. This underscores the significance of considering multiple time scales in financial analysis, as it 

offers insights that may not be apparent when relying solely on a single time frame. By detailing the 

relationships according to various investment periods, the multiscale analysis adds granularity to the 

understanding of asset pricing dynamics. This finer level of analysis enables investors and financial analysts 

to make more informed decisions tailored to specific time horizons, thereby enhancing the effectiveness of 

investment strategies and risk management practices. Additionally, it is noteworthy that, apart from the 

market risk representative variable, the significance of the other explanatory variables studied fluctuates 

depending on the temporal horizon. This observation underscores the dynamic nature of asset pricing 

dynamics, where the relevance of certain factors may vary over different time periods. Of particular interest 

are the higher-order moments representing systematic risks, such as skewness and kurtosis. These non-linear 

market risk factors, measured by the square and cube of the market risk, respectively, demonstrate a positive 

influence on the quality of the pricing model. This suggests that incorporating these higher-order moments 

into the analysis enhances the model's ability to capture the complexities of market dynamics and improve 

its predictive power. By acknowledging the importance of these systematic risk factors and their impact on 

the pricing model, financial practitioners can adopt more robust risk management strategies and investment 

approaches that account for the nonlinearities and complexities inherent in the financial markets. This holistic 

understanding enables investors to navigate market fluctuations more effectively and make informed 

decisions that align with their investment objectives and risk tolerance. The incorporation of the third and 

fourth moments significantly enhances the explanatory power of the model. This underscores the importance 

of considering higher-order moments in understanding market dynamics and risk factors. In conclusion, the 

multiscale analysis addresses the inherent instability of risks over time and the variability across different 

investment periods. By offering a nuanced perspective that accounts for these fluctuations, it provides 

investors with the flexibility to tailor their investment strategies according to their risk tolerance and 

investment objectives. With access to a range of evaluations based on different time scales, investors can 

make more informed decisions about the duration and composition of their portfolios. This empowers them 

to construct portfolios that align more closely with their expectations and risk preferences, ultimately 

enhancing their ability to achieve their financial goals while managing risk effectively. Utilizing the Fama-

French pricing model augmented by higher-order moments allows investors to make more informed 

investment decisions. By identifying the time period and portfolio for which the model achieves its highest 

explanatory power, investors can optimize their investment strategies for maximum effectiveness. In the 

context of financial markets, where timing and portfolio selection are crucial, leveraging the detailed insights 

provided by the Multiresolution Analysis (MRA) based on the Maximal Overlap Discrete Wavelet 

Transform (MODWT) can significantly enhance investment outcomes. This approach enables investors to 

capture the nuances of market dynamics across different time scales, thereby enabling them to capitalize on 

profitable opportunities while mitigating risks effectively. 
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